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c© Società Italiana di Fisica
Springer-Verlag 2000

Error estimates for ππ scattering threshold parameters in Chiral
Perturbation Theory to two loops

J. Nievesa and E. Ruiz Arriolab

Departamento de F́ısica Moderna, Universidad de Granada, E-18071 Granada, Spain

Received: 28 April 2000
Communicated by W. Weise

Abstract. Using the analysis of ChPT to two loops, we perform an error analysis of the threshold and
low-energy parameters, based on the uncertainties for the one-loop low-energy parameters and the reso-
nance saturation mechanism. Different sets of one-loop low-energy constants have been considered. Thus,
the predictive power of the effective field theory, is quantified on the basis of the present experimental
uncertainties.

PACS. 11.30.Rd Chiral symmetries – 11.80.Et Partial-wave analysis – 12.38.Bx Perturbative calculations
– 13.75.Lb Meson-meson interactions

Chiral perturbation theory (ChPT) is the effective
pion field theory where the expansion parameter is
m2/(

√
4πf)2, with m the pion mass and f the weak pion

decay constant. At some finite order an increasing number
of undetermined parameters is generated which can, so far,
only be fixed by experimental data. Besides the theoretical
uncertainty introduced by the finite number of terms con-
sidered in the expansion, there is an additional experimen-
tally induced uncertainty. The low-energy parameters in-
herit such an uncertainty, thus limiting in practice the pre-
dictive power of the effective field theory; if the errors at
a given order, say O(m2n/(

√
4πf)2n) are larger than the

contributions of the next order O(m2n+2/(
√
4πf)2n+2),

the calculation of the latter becomes useless, unless more
accurate experiments are performed.

To make our points quantitative, we consider ππ scat-
tering as the prototype reaction to study the role played
by chiral symmetry breaking and the validity of the chi-
ral expansion within QCD at low energies. The scattering
lengths and effective ranges for the isospin I = 0, 1, 2 have
been computed in SU (2) ChPT at tree level [1], one loop
[2] and two loops [3,4], in a power series expansion

aIJ = atree
IJ + a1 loop

IJ + a2 loop
IJ + . . . , (1)

bIJ = btree
IJ + b1 loop

IJ + b2 loop
IJ + . . . . (2)

At tree level, the number of parameters involved are two:
the pion weak decay constant fπ = 93.2MeV and the pion
mass m = 139.6MeV. For the purposes of the present
discussion the experimental error bars in these parame-
ters can effectively be taken to be zero. At the one-loop
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level one has four, in principle undetermined, parameters
l̄1, l̄2, l̄3, l̄4. At the two-loop level the whole SU (2)ππ am-
plitude information can be gathered into six coefficients,
which in refs. [3,4] have been called b1, . . . , b6. Ideally,
these parameters could be extracted from a direct low-
energy analysis of ππ scattering experiments. The data
are, however, too poor in the low-energy region and sev-
eral methods have been devised. Motivated by the success
of the resonance saturation hypothesis at scales µ ∼ 0.5–
1GeV, at the one-loop level [5], the authors of ref. [4]
suggest to estimate the bulk of the two-loop corrections
through resonance saturation. This approach requires the
values for the one-loop l̄’s deduced from some clean source.
In ref. [4] two different sets of l̄ parameters have been con-
sidered: i) by taking the l̄1 and l̄2 parameters obtained
from Kl4 form factors using a dispersive one-loop calcu-
lation for three flavors [6] (Set I in [4]), and ii) fixing l̄1
and l̄2 to the values deduced from D-wave ππ scattering
lengths, at order O(p6) (Set II in [4]). Unfortunately, no
error analysis has been undertaken in ref. [4]. On the other
hand, the estimates based on Kl4 analysis, can now be im-
proved thanks to a recent study of this process at two-loop
accuracy [7]. Other possibility is to extract the one-loop
low-energy constants, together with their errors, from Roy
sum rules, saturated by the high-energy behavior of ππ
scattering [8]. In conjunction with resonance saturation,
this procedure also yields an error analysis of threshold
parameters [8].

An error analysis from the point of view of the predic-
tive power of ChPT is missing, and it is the main subject
of the present work. We assume that primary quantities,
coming from a χ2-fit or direct experimental measurements,
are Gauss distributed (with or without correlations), as we
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learn from elementary statistics. We propagate errors by
means of Monte Carlo simulations, keeping always statisti-
cal correlations between all parameters entering in a given
derived quantity. We use 104 samples, and to quote errors
we always use a 68% confidence level around the central
value. Since the out coming threshold parameters distri-
butions are not Gaussians, we take in this way into ac-
count possible skewness in the distributions. By using the
Monte Carlo method, we avoid summing errors in quadra-
tures, which would be incorrect for statistically correlated
quantities, and we do not have to use any complicated
covariance formula.

Let a(n) and ∆a(n) be the n-loop central value and er-
ror of an observable. Thus, to be predictive and convergent
at the n-loop level one ought to have the relation,

∆a(n) � a(n+1) � a(n). (3)

In order to establish these necessary requirements from
a quantitative point of view we will adopt the currently
accepted scheme of assuming that resonance saturation
yields the bulk of the two-loop contribution at scales 0.5–
1.0GeV. This induces a scale ambiguity in the two-loop
part of the b-parameters, which we implement by provid-
ing the scale with an error,

µ = 750± 250MeV. (4)

Moreover, since one does not expect resonance saturation
to be exact, we provide these parameters with 100% un-
certainty and take, in the notation of ref. [4], the values

r1 = −0.6× 10−4 × (1± 1),
r2 = 1.3× 10−4 × (1± 1),
r3 = −1.7× 10−4 × (1± 1),
r4 = −1.0× 10−4 × (1± 1),
r5 = 1.1× 10−4 × (1± 1),
r6 = 0.3× 10−4 × (1± 1), (5)

at the scale µ given in eq. (4). In addition to these num-
bers, one needs estimates of the one-loop low-energy pa-
rameters l̄1,2,3,4. Through all this work we fix

l̄3 = 2.9± 2.4, l̄4 = 4.4± 0.3, (6)

as determined from the study of SU (3) breaking effects
and the scalar form factor in refs. [2] and [9], respectively.
There is less consensus regarding the values of l̄1 and l̄2,
therefore we consider three possibilities. We give below the
central values, errors and linear correlation coefficients for
l̄1 and l̄2 in each case, in order to characterize the full
statistical distributions, deduced from different primary
distributions, which will be used later to calculate thresh-
old and low-energy parameters.

– Set I Kl4 form factors: ref. [7] allows to determine
l̄1 and l̄2 from a two-loop analysis of Kl4 decays.
The analysis is done in terms of the scale dependent
SU (3) low-energy constants Lr

i at the ρ mass scale,
mρ = 770MeV, and central values for l̄1 and l̄2 are

given. The relation between the SU (2) and SU (3) low-
energy constants is known at one loop [10] and thus
the determination of the l̄1 and l̄2 parameters in [7]
suffers from two-loop SU (3) uncertainties. From the
remarks of that work a strong anticorrelation between
l̄1 and l̄2 can be inferred, although the corresponding
correlation matrix is not given. We will take here two
extreme view points, total decorrelation and total an-
ticorrelation. As we will see, the totally anticorrelated
case seems to induce smaller errors in the scattering
lengths as compared to the totally decorrelated case.
We will call these two choices Set Ia and Set Ib, re-
spectively. We will also examine here a partial anti–
correlation scenario (Set Ic) which models more accu-
rately the limited statistical information provided in
ref. [7]. More details are given in the Appendix.
For the three sets, we take Lr

1 = 0.52 ± 0.23, Lr
2 =

0.72 ± 0.24 and Lr
3 = −2.69 ± 0.99 (main fit in table

1 of ref. [7]). For Set Ia, we assume that the three
statistical distributions are de–correlated, whereas for
Set Ib [Set Ic] assume these are correlated as specified
in eq. (12) (eq. (13) with r13 = r23 = −r12 = −0.85).
By means of a Monte Carlo simulation we generate the
statistical distributions for the l̄1 and l̄2 parameters,
and thus we get

l̄1 = 0.3± 2.1, l̄2 = 4.77± 0.45,
r(l̄1, l̄2) = 0, Set Ia, (7)

l̄1 = 0.3± 1.0, l̄2 = 4.77± 0.45,
r(l̄1, l̄2) = −1, Set Ib, (8)
l̄1 = 0.3± 1.2, l̄2 = 4.77± 0.45,

r(l̄1, l̄2) = −0.69, Set Ic, (9)

being r the linear correlation coefficient. The errors
quoted above are clearly low bounds, because they
do not account for any systematic effects, in partic-
ular those induced by the O(p6)-corrections to the re-
lations between the two- and three-flavor low-energy
constants1. Estimates for the systematic errors are not
given in ref. [7] either. Notice that correlations among
Lr

1,2,3 do not affect to the error in l̄2 (see footnote 1).
1 Note that in the second entry of ref. [7] there is an inconsis-

tency. In eq. (6.24) an error of ±1.0 for l̄2 is quoted. That error
is not compatible with having l̄2 = 192π2Lr

2−(1+ln(m2
K/µ2)+

8 ln(m2/µ2))/8, as deduced from eq. (6.23) of that reference,
and an error for Lr

2 of ±0.24 × 10−3. The previous formula
gives an error for l̄2 of ±192π2 × 0.24× 10−3 = ±0.45 and it is
obviously independent of the possible correlations between the
SU (3)Lr

1, L
r
2 and Lr

3 parameters, because it only involves Lr
2.

This is in agreement with our results. The problem in ref. [7]
is that the error definition for the SU (2)-parameters, “pro-
jections on the relevant variable of the 68% confidence level
domain”, is not consistent with that adopted for the SU (3)-
parameters. For these latter ones, the standard and tradition-
ally accepted χ2-errors are given. The method of the projec-
tions would lead to significantly different errors for Lr

1,2,3, as
can be appreciated from the figures shown in ref. [7]. In any-
case, this projection method is not standard. The standard and
complete procedure consists of giving the full correlation ma-
trix deduced from the χ2-fit. We ignore to what extent the
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– Set II D-waves: The method of ref. [4] allows to define
another parameter set. If the D-wave ππ scattering
lengths for isospin I = 0 and I = 2, a02 and a22,
respectively, are fixed at the two-loop level one gets
parameter Set II,

l̄1 = −0.8± 4.8, l̄2 = 4.5± 1.1,
r(l̄1, l̄2) = −0.75, Set II. (10)

To obtain l̄1 and l̄2 and their errors, we have propa-
gated the errors in µ, a02, a22, l̄3, l̄4 and the resonance
parameters of eq. (5) in the formula for the D-wave
scattering length given in ref. [4]. This procedure gen-
erates a correlation between l̄1 and l̄2 which has to be
taken into account when calculating errors in quanti-
ties depending on the previous parameters. Note that
our central values for l̄1 and l̄2 numbers are not exactly
the ones quoted in ref. [4] since they take µ = 1GeV.
Furthermore, in ref. [4] no error estimates are quoted
for l̄1 and l̄2. If we had taken µ = 1.00± 0.25GeV, we
would have obtained l̄1 = −1.5±5.8 and l̄2 = 4.5±1.1,
in agreement with their quoted central value.

– Set III Roy sum rules: Finally, using the method of
Roy sum rules, ref. [8], another parameter set has been
obtained. We call it Set III,

l̄1 = −0.9± 1.2, l̄2 = 4.34± 0.25,
r(l̄1, l̄2) = −0.22, Set III. (11)

Both central values and errors quoted above do not
agree with those given in eq. (21) of ref. [8]. The dif-
ference on the central values is due to the fact that in
this latter reference all resonance parameters are set
to zero at 1GeV (ri(1GeV) = 0±2×10−4). To obtain
the errors we have propagated the errors in the reso-
nance saturation scale µ, λ1, λ2 (parameters given in
eq. (2) of ref. [8]), l̄3, l̄4 and the resonance parameters
of eq. (5) when eqs. (6–7) of ref. [8] are inverted. This,
again generates a correlation between l̄1 and l̄2 as in
the previous cases2. The λ1, λ2 parameters suffer from
sizeable systematic uncertainties. Those have been es-
timated in the second entry of ref. [3] and turned out
to be of comparable magnitude, when not bigger, than
the statistical fluctuations, and as a consequence sta-
tistical correlations get washed out. This justifies the
use of decorrelated distributions for these two param-
eters both in ref. [8] and in the present work.

errors on derived quantities given in ref. [7] are affected by this
inconsistency.

2 Errors differ from those quoted in ref. [8], because of the
different treatment considered here (error on the resonance
saturation scale, different choice, both for central values and
errors, for the resonance parameters but also because there
is a numerical mistake in that work, which we correct here.
The error analysis of eqs. (16) and (17) of that work yields
l̄1 = −0.37 ± 0.95 ± 1.27 and l̄2 = 4.17 ± 0.19 ± 0.33, which
errors do not agree with those quoted in eq. (20) of that refer-
ence.

The determination of the one-loop parameters, their corre-
sponding uncertainties as well as their mutual correlation
can be best seen by plotting the resulting two-dimensional
Monte Carlo generated distributions for all considered
sets. This is done in fig. 1. For all sets we consider a suffi-
ciently large sample, N = 104, and have checked numeri-
cal stability by doubling the sample size. We also plot the
68% confidence limit contours, i.e., inside these bound-
aries 68% of distribution points are enclosed. For a bet-
ter comparison we have also superposed (bottom panel)
the 68% confidence limit contours to check for statistical
compatibility. As could already be anticipated, the main
difference between parameter Sets Ia, Ic and Ib (corre-
sponding to Kl4 decays) is that the errors decrease as the
anticorrelation increases. The parameter Set II provides
the largest uncertainties, and large overlap with the re-
maining sets is encountered. At the same time, it is clear
that there is a trend to discrepancy between parameter
Sets Ic and III, since very little overlap is observed be-
tween both distributions. We should also mention that the
level of uncertainty regarding both the Kl4 and the Roy
sum rules determinations is comparable, although the lat-
ter method seems to be slightly more accurate.

In ref. [4] the calculation of the two-loop contributions
to the threshold parameters was undertaken and explicit
expressions for scattering lengths and ranges were written,
in terms of the low-energy constants, b1,2,3,4,5,6. In this
note we complete their numerical calculation by provid-
ing their numbers with the inherited error-bars and also
exploring different parameter sets. This is shown in table 1
(for the bi parameters) and in table 2 (for the threshold
parameters, aIJ , bIJ).

For all sets, we have generated statistical distribu-
tions both in the one-loop and the two-loop corrections to
the scattering lengths and effective ranges by propagating
the statistical distributions in the low-energy parameters
l̄1,2,3,4, the resonance parameters r1,2,3,4,5,6 and the scale
µ discussed above. The uncertainty in the scale and in the
resonance contributions, affect to the error of the two-loop
corrections only. Errors in the two-loop contributions are
correlated with those in the one-loop contributions. There-
fore, the error of the sum cannot be obtained by simply
adding the errors in quadrature of one and two-loop con-
tributions. In any case, for the two-loop calculation to be
numerically meaningful these one loop uncertainties have
to be significantly smaller than the corrections due to the
two-loop calculation. At the same time the two-loop cor-
rection has to be significantly smaller than the one-loop
correction, for a convergent expansion.

As we see in table 1, all predictions for the bi parame-
ters are compatible within errors. Moreover, as one might
have inferred from the values and distributions of the pa-
rameters l̄1 and l̄2 the increasing accuracy of the deter-
minations correspond to Sets II, Ia, Ic, Ib and III, in
that order3. Besides, we would like to point out that for
the Sets Ia, Ib and Ic the statistical fluctuations in the
one-loop parameters induce errors on the bi parameters
as important, when no more as in the decorrelated case

3 These two latter parameter sets have similar accuracy.



380 The European Physical Journal A

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-8 -6 -4 -2 0 2 4 6

l 2

Sets Ia, Ib

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-8 -6 -4 -2 0 2 4 6

l 2

Set Ic

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-8 -6 -4 -2 0 2 4 6

l 2

l 1

-

Set II
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-8 -6 -4 -2 0 2 4 6

l 2

l 1

-

Set III

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-8 -6 -4 -2 0 2 4 6

l 2

l 1

-

Set II

Set III

Set Ia

Set Ic Set Ib

-
-

-
-

-

Fig. 1. Two-dimensional distributions of the low-energy parameters l̄1, l̄2 generated via Monte Carlo simulation with N = 104

samples. The contours and the line made of squares for the Set Ib represent the 68% confidence limit, i.e. inside them the
68% of the samples are enclosed. Upper left panel, parameter Sets Ia and Ib corresponding to a two-loop Kl4 form factor
analysis [7], with totally decorrelated and totally anticorrelated l̄1 and l̄2 parameters, respectively. Upper right panel, parameter
Set Ic corresponding to a two loop Kl4 form factor analysis [7], with linear correlation r = −0.69. Middle left panel, parameter
Set II corresponding to D-waves in ππ scattering (r = −0.75). Middle right panel, parameter Set III corresponding to Roy sum
rules in ππ scattering (r = −0.22). Finally, in the bottom panel the 68% confidence limit contours are superposed.
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Table 1. Low-energy scale independent two-loop parameters and their uncertainties due to the error bars in the l̄′s one-loop
parameters and the uncertainties in both the scale and the resonant part of the two-loop contribution. Set Ia corresponds to
Kl4 two-loop calculation: l̄1 = 0.3 ± 2.1, l̄2 = 4.77 ± 0.45, l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.3, with l̄1 and l̄2 uncorrelated. Set Ib
corresponds to Kl4 two-loop calculation: l̄1 = 0.3 ± 1.0, l̄2 = 4.77 ± 0.46, l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.3, with l̄1 and l̄2 totally
anticorrelated. Set Ic corresponds to Kl4 two-loop calculation: l̄1 = 0.3 ± 1.2, l̄2 = 4.77 ± 0.44, l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.3,
with a correlation coefficient r(l̄1, l̄2) = −0.69. Set II corresponds to a two loop D-wave ππ scattering lengths calculation (see
main text): l̄1 = −0.8± 4.8, l̄2 = 4.5± 1.1, l̄3 = 2.9± 2.4, l̄4 = 4.4± 0.3, with a correlation coefficient r(l̄1, l̄2) = −0.75. Set III
corresponds to a Roy equation sum rule analysis of ππ scattering at two loops: l̄1 = −0.9± 1.2, l̄2 = 4.34± 0.25, l̄3 = 2.9± 2.4,
l̄4 = 4.4 ± 0.3, with a correlation coefficient r(l̄1, l̄2) = −0.22. The scale is µ = 750 ± 250MeV under the resonance saturation
hypothesis, for which a 100% error is assumed.

Set Ia Set Ib Set Ic Set II Set III

10 · b1 −0.74± 0.21 −0.74± 0.05 −0.74± 0.16 −0.83± 0.48 −0.83± 0.15

10 · b2 +0.71± 0.17 +0.71± 0.11 +0.71± 0.12 +0.78± 0.41 +0.78± 0.10

102 · b3 −0.15 + 0.30
− 0.25 −0.15 + 0.19

− 0.13 −0.15 + 0.21
− 0.15 −0.27± 0.65 −0.27 + 0.19

− 0.15

102 · b4 +0.53± 0.07 +0.53± 0.06 +0.53 + 0.06
− 0.07 +0.48± 0.13 +0.47± 0.03

103 · b5 +0.22 + 0.19
− 0.24 +0.22 + 0.09

− 0.14 +0.22 + 0.11
− 0.16 +0.09 + 0.26

− 0.35 +0.07 + 0.10
− 0.13

103 · b6 +0.10 + 0.03
− 0.04 +0.10 + 0.03

− 0.04 +0.10 + 0.03
− 0.04 +0.09 + 0.02

− 0.04 +0.08 + 0.03
− 0.04

of Set Ia, as the scale uncertainty quoted in ref. [4]. For
the parameter Set II the central values of the b parame-
ters are slightly different than those in ref. [4] because the
central l̄1 and l̄2 values are also different. The errors for
the parameter Set II are much larger than those found for
parameter Sets I and III. The size of the errors for Set
II is comparable with the ones for b3, b4, b5, b6 found in
ref. [3]4.

As we see in table 2, results for a20, b20 and a22 with
parameter Set Ia are such that the one-loop errors are
larger than the central values of the two-loop contribu-
tion. The inclusion of statistical correlations, Sets Ib and
Ic, increases the accuracy of the predictions, though it still
happens that errors on the one-loop contribution make
irrelevant the two-loop one. The situation worsens dra-
matically, for parameter Set II where we see that in most
considered cases predictive power is lost beyond one loop,
with the exception of the S-wave scattering lengths a00

and a02. Set III, obtained from the Roy-sum rule analysis
of ref, [8], turns out to be as predictive as Sets Ib and
Ic, obtained from the two-loop improved Kl4 analysis of
ref. [7]. In any case is also true that for a20, b20 and a22

4 Regarding the parameter Set III, one should say that if
one would calculate the b’s from eq. (48) of ref. [3], with the
numerical input of eq. (2) of ref. [8], one would have obtained

10b1 = −0.68± 0.09, 10b2 = +0.64± 0.09,

102b3 = −0.35± 0.24, 102b4 = +0.47± 0.03,

103b5 = 0.13± 0.06, 103b6 = 0.10± 0.01,

b3,4,5,6 are in agreement with eq. (49) of ref. [3]. We see that this
is not the same as evaluating the b’s in the spirit of resonance
saturation (eqs. D.1, D.2 and D.3 of second entry in ref. [4])
from previously computed values of l̄1 and l̄2, through their
relation to λ1 and λ2 parameters, as suggested in ref. [8] and
adopted in this work. In any case, the values given above and
those corresponding to Set III in table 1 are compatible within
statistical fluctuations.

within Set III the one loop uncertainties are larger than
the two-loop contribution. The results of the table are
compatible, for all parameter sets with the experimental
analysis of ππ scattering data [11] but produce in general
much better errors despite the problems discussed above
on the relevance of the two-loop contributions. The early
work on Kl4 form factors using a dispersive one-loop cal-
culation for three flavors [6], predicted a isoscalar D-wave
three standard deviations above the value extracted from
the experiment [8], the upgrade of this calculation to two-
loop accuracy in ref. [7] have contributed to considerably
improve such a discrepancy.

In fig. 2 we exhibit the Monte Carlo propagated two-
dimensional distributions of the S-wave scattering lengths,
for isospin channels I = 0 and I = 2, for all parameter
sets and in terms of the 68% confidence limit contours. It
is interesting to compare this distributions with the pre-
liminary results of ref. [12], based on the detailed numer-
ical analysis of Roy equations in ππ scattering. Such an
analysis implies the existence of a universal band, outside
which no solution to Roy equations exists, as a mathe-
matical consequence of analyticity, crossing, unitarity and
isospin conservation. In addition to this, the physical re-
quirement of describing the available experimental data,
provides a 70% confidence limit contour [12]. As can be
seen in the figure, with all parameter sets considered in
this work, the two-loop ChPT analysis are not only com-
patible with the 70% confidence limit contour of ref. [12]
but have significant smaller statistical fluctuations.

In summary, effective field theories like Chiral Pertur-
bation Theory have predictive power, but it is not unlim-
ited because of three reasons: 1) truncation of the expan-
sion, 2) proliferation of undetermined constants at any or-
der and 3) experimental uncertainties. Thus, experimental
data prove crucial to determine the, increasing with the or-
der, unknown constants and their errors, which propagate
in a correlated way to higher orders in the expansion possi-
bly undermining the “convergence” of the expansion. This
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Table 2. Threshold ππ scattering parameters and their uncertainties in units of m due to the error bars in the l̄′s one-loop
parameters and the uncertainties in both the scale and the resonant part of the two-loop contribution. Sets Ia, Ib, Ic, II and
III are defined in table 1 and main text. Errors are not added in quadrature due to statistical correlations. Experimental values
are from ref. [11].

aIJ ; bIJ Set (tree) +(1 loop) +(2 loop) total experiment

a00m Ia 0.156 0.043± 0.005 0.015± 0.004 0.214± 0.008 0.26± 0.05

Ib “ “ ± 0.002 “ ± 0.003 “ ± 0.004 “

Ic “ “ ± 0.003 “ ± 0.003 “ ± 0.005 “

II “ 0.040± 0.007 0.013± 0.004 0.209± 0.010 “

III “ 0.039± 0.003 0.012± 0.002 0.208± 0.005 “

b00m
3 Ia 0.179 0.070± 0.015 0.025± 0.011 0.273± 0.024 0.25± 0.03

Ib “ “ ± 0.003 “ + 0.007
− 0.008 “ + 0.008

− 0.009 “

Ic “ “ ± 0.006 “ ± 0.008 “ + 0.011
− 0.012 “

II “ 0.059± 0.024 0.019± 0.013 0.257 + 0.032
− 0.036 “

III “ 0.058± 0.008 0.018± 0.006 0.254± 0.010 “

10 · a11m
3 Ia 0.297 0.055± 0.012 0.021 + 0.003

− 0.004 0.373 + 0.011
− 0.012 0.38± 0.02

Ib “ “ ± 0.009 “ + 0.002
− 0.003 “ ± 0.011 “

Ic “ “ ± 0.009 “ + 0.002
− 0.003 “ ± 0.011 “

II “ 0.059± 0.033 0.018 + 0.003
− 0.004 0.375 + 0.035

− 0.031 “

III “ 0.059± 0.007 0.018± 0.002 0.374± 0.007 “

10 · b11m
5 Ia 0 0.030± 0.012 0.025 + 0.006

− 0.008 0.055 + 0.008
− 0.011 -

Ib “ “ + 0.008
− 0.009 “ + 0.002

− 0.004 “ + 0.009
− 0.011 -

Ic “ “ ± 0.009 “ + 0.003
− 0.005 “ + 0.009

− 0.011 -

II “ 0.034± 0.033 0.020 + 0.005
− 0.009 0.054± 0.029 -

III “ 0.034± 0.007 0.019 + 0.003
− 0.005 0.053 + 0.005

− 0.006 -

10 · a20m Ia −0.446 0.021± 0.021 0.002± 0.004 −0.423± 0.024 −0.28± 0.12

Ib “ “ ± 0.008 “ ± 0.004 “ ± 0.010 “

Ic “ “ ± 0.011 “ ± 0.004 “ ± 0.013 “

II “ 0.007± 0.028 0.000± 0.004 −0.439 + 0.028
− 0.030 “

III “ 0.004± 0.013 −0.001 + 0.003
− 0.004 −0.442± 0.015 “

10 · b20m
3 Ia −0.892 0.129± 0.043 0.003 + 0.013

− 0.011 −0.760± 0.043 −0.82± 0.08

Ib “ “ ± 0.010 “ + 0.012
− 0.010 “ + 0.016

− 0.014 “

Ic “ “ + 0.018
− 0.019 “ + 0.013

− 0.011 “ + 0.023
− 0.021 “

II “ 0.095± 0.045 0.003 + 0.016
− 0.013 −0.794± 0.039 “

III “ 0.088± 0.022 0.003± 0.011 −0.801± 0.021 “

102 · a02m
5 Ia 0 0.143± 0.031 0.058 + 0.016

− 0.019 0.202± 0.042 0.17± 0.03

Ib “ “ ± 0.009 “ + 0.016
− 0.019 “ + 0.021

− 0.025 “

Ic “ “ ± 0.015 “ + 0.016
− 0.019 “ + 0.024

− 0.028 “

II “ 0.117± 0.028 0.053± 0.022 0.170± 0.030 “

III “ 0.111± 0.016 0.051 + 0.013
− 0.016 0.163± 0.020 “

103 · a22m
5 Ia 0 0.278± 0.241 −0.035 + 0.09

− 0.07 0.24± 0.17 0.13± 0.30

Ib “ “ ± 0.062 “ + 0.057
− 0.039 “ + 0.07

− 0.05 “

Ic “ “ ± 0.108 “ + 0.064
− 0.044 “ + 0.10

− 0.08 “

II “ 0.119± 0.460 0.011 + 0.172
− 0.124 0.13± 0.30 “

III “ 0.102± 0.130 0.015 + 0.072
− 0.061 0.12± 0.11 “

situation also appears in fundamental theories like QED or
QCD, but it is in fact worse in ChPT because the number
of unknown parameters in these theories does not increase
with the order of the expansion. This why error analysis is
so important. We have exemplified our points in the calcu-
lation of the threshold parameters for ππ scattering up to
two loops. The general picture provided by ChPT is rather
satisfactory, in the sense that the accuracy of the predic-

tions is much bigger than the available data5. Nevertheless
we find cases where, within the present experimental ac-
curacy, the errors in the one-loop contribution are larger
than the central values of the two-loop contribution. Con-
clusions regarding the loss of predictive power, can only
be reinforced if systematic uncertainties induced by the

5 Right plot of fig. 2 constitutes a clear example.
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Fig. 2. Top panel: contours corresponding to a 68% confidence
limits for the two-dimensional distributions of the S-wave scat-
tering lengths a00 and a20. Parameter sets are defined in the
main text. The linear correlation coefficients, r(a00, a20), for
Sets Ia, Ib, Ic, II and III are 0.85, 0.38, 0.58, 0.86 and 0.56
respectively. Bottom panel: The same as before with the addi-
tional inclusion of the universal bands and the 70% confidence
limit contour (crosses) deduced from a numerical analysis of
the Roy equations in ref. [12].

O(p6)-corrections to the relations between the two- and
three-flavor low-energy constants are included in the re-
sults of ref. [7]. The effect of these systematic corrections
will be twofold: a general increase of the error fluctuations
and a decrease of the correlations. Both effects will con-
tribute to increase the errors on all derived threshold and
low-energy parameters presented in this work and deduced
from Kl4-decays.

ChPT defines a whole family of effective theories, but
obviously the most interesting choice exactly corresponds
to low-energy QCD. In QCD with two flavors and neglect-
ing isospin breaking there appear only two independent
parameters, ΛQCD and the quark massmQ. The quantities
fπ, m, the l̄’s, the b’s and higher-order parameters must
be functions of them. This dependence introduces corre-
lations among all low-energy parameters which, if taken
into account, would influence the present error analysis,
and presumably might yield to more moderate errors in

terms of ΛQCD and mQ and their errors. Assuming more
statistically independent parameters than QCD suggests
is, so far, another manifestation of the inability to under-
take a quantitative and microscopic derivation of ChPT as
an effective low-energy theory of QCD on the one hand,
but on the other hand reassures ChPT as a convenient
tool to deal with non-perturbative phenomena in strong
interactions.

Appendix: Modeling statistical correlations in
Kl4 decays

In ref. [7] is stated that Lr
3 is strongly anticorrelated with

Lr
1 and Lr

2, though central values and errors for these pa-
rameters are given (Lr

1 = 0.52 ± 0.23, Lr
2 = 0.72 ± 0.24

and Lr
3 = −2.69 ± 0.99, main fit in table 1 of ref. [7]),

however the correlation matrix is not provided. Besides,
new parameters X1 = Lr

2 − 2Lr
1 − Lr

3, X2 = L2
r and

X3 = (Lr
2−2Lr

1)/Lr
3 are introduced, it is quoted the value

X3 = 0.12+8
−11 and it is also specified that X3 is little corre-

lated with X1 and X2. We will show below how statistical
modeling and the fragmentary information given in ref. [7]
can be used to reconstruct some relevant information on
the correlations between l̄1 and l̄2. To be most objective,
we also explore two other extreme cases which correspond
to total decorrelation and total anticorrelation. This said,
we explore three different scenarios in this work:

– A total decorrelated picture (r(Lr
1, L

r
3) = r(Lr

2, L
r
3) =

r(Lr
1, L

r
2) = 0, being r the linear correlation coeffi-

cient). It leads to X3 = 0.12+23
−20, r(X1,X3) = −0.14

and r(X2,X3) = −0.09.
– A total anticorrelation scenario (r(Lr

1, L
r
3) =

r(Lr
2, L

r
3) = −1) which can be implemented by

simply assuming a linear relation
(
Lr

1 − 〈Lr
1〉

)
σ1

= −
(
Lr

3 − 〈Lr
3〉

)
σ3

=

(
Lr

2 − 〈Lr
2〉

)
σ2

, (12)

That is the necessary and sufficient condition for to-
tal anticorrelation. Besides, one also has r(Lr

1, L
r
2) =

+1. This simple model leads to X3 = 0.12+3
−6 and

r(X1,X3) = r(X2,X3) = 0.06. Thus, the total an-
ticorrelation scenario, though simple, provides an ac-
ceptable description, and in any case much more pre-
cise than when correlations between Lr

1, L
r
2 and Lr

3 are
neglected, of the findings of ref. [7].

– A partial anticorrelation scenario which can be imple-
mented if one assumes that Lr

1 , Lr
2 and Lr

3 are Gaus-
sian distributed6 according to

P
(
Lr

1, L
r
2, L

r
3

)
=

(det[C])1/2

(2π)3/2σ1σ2σ3
×e−1/2(LT ·C·L), (13)

where P is the join density probability distribution of
the three random variables, σi is the Lr

i error, L is a
6 This is totally justified, because in ref. [7] these variables

have been determined from a χ2-fit.
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Fig. 3. Two-dimensional distributions of the SU (3) low-energy
parameters Lr

1, Lr
3 and Lr

2, Lr
3 generated via Monte Carlo sim-

ulation with N = 104 samples. The contours represent the 68%
confidence limit, i.e., inside them the 68% of the samples are
enclosed.

column matrix with elements (Lr
i − µi)/σi, being µi

the central value of the variable Lr
i , and finally the

inverse of the symmetric matrix C is given by

C−1 =



1 r12 r13

r12 1 r23

r13 r23 1


 (14)

and therefore it is determined by the linear correlation
coefficients rij = r(Lr

i , L
r
j).

Our aim is to improve the total anticorrelated scenario
presented in the item above but keeping the model still
as simple as possible. Thus we have explored situations

where r13 = r23 = −r12 = r, for which one can analyt-
ically diagonalize the C-matrix in eq. (13). We find for
r = −0.85, still a strong anticorrelation, X3 = 0.12+8

−10,
r(X1,X3) = −0.02 and r(X2,X3) = −0.01. Thus, this
model for the correlations reproduces pretty much the
results given in the Kl4 analysis of ref. [7]. This can
also be appreciated in fig. 3 where we show the result-
ing two-dimensional distributions of the SU (3) low-
energy parameters Lr

1, Lr
3 and Lr

2, Lr
3. These distri-

butions compare reasonably well with those given in
fig. 2 of the first entry of ref. [7]. This makes us more
confident on the validity of the simple statistical model
used here.

The correlations between Lr
1, Lr

2 and Lr
3 are trans-

ported through the equations relating SU (2) and SU (3)
low-energy constants. For the total anticorrelated sce-
nario leads to a total anticorrelation for l̄1 and l̄2, it
is to say (l̄1 − 〈l̄1〉)/σ1 = −(l̄2 − 〈l̄2〉)/σ2 and therefore
r(l̄1, l̄2) = −1. For the total decorrelated case the corre-
lation coefficient r(l̄1, l̄2) is zero, whereas for the partial
correlation scenario we get r(l̄1, l̄2) = −0.69.

Work supported by DGES PB98-1367 and by the Junta de
Andalućıa FQM0225.
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